O

ERIC

Aruitoxt provided by Eic:

DOCUMENT RESUME

ED 476 971 ' IR 021 699

AUTHOR Battig, Michael E.

TITLE Utilizing the PDA as a Vehicle for User Interface Design
Pedagogy.

PUB DATE 2002-06-00

NOTE 7Tp.; In: ED-MEDIA 2002 World Conference on Educational

Multimedia, Hypermedia & Telecommunications. Proceedings
(14th, Denver, Colorado, June 24-29, 2002); see IR 021 687.
AVAILABLE FROM Association for the Advancement of Computing in Education
(AACE), P.O. Box 3728, Norfolk, VA 23514. Tel: 757-623-7588;
e-mail: info@aace.org; Web site: http://www.aace.org/DL/.

PUB TYPE Reports - Research (143) -- Speeches/Meeting Papers (150)
EDRS PRICE EDRS Price MF01/PCOl1 Plus Postage.
DESCRIPTORS *Computer Interfaces; *Computer Science Education; *Computer

Software Development; *Computer System Design; Higher
Education; Information Systems; Instructional Development;
Instructional Materials; *Screen Design (Computers); *Student
Developed Materials

ABSTRACT

As computing and embedded systems become ubiquitous in our
world, the importance of user interface design knowledge increases in our
curriculum. Students of undergraduate information systems or computer science
programs should possess some competence in this computing sub-discipline.
However, many programs do not have the curricular space to host a separate
course in usability or user interface design. To address this concern,
results and observations of incorporating user interface design pedagogy in
the context of a software engineering project course are presented. The
project centers around a data collection application to be hosted on a PDA
(Personal Digital Assistant). The application has significant constraints
concerning usability and human factors that provide a rich context for
teaching and demonstrating user interface design concepts. An appendix
highlights the evolution of the actual interface developed by one of the
development teams. The user interface design changes were the result of
feedback that students received from four sources: course materials on
usability, direct instructor feedback, fellow classmate feedback, and
outside-the-course student feedback. (Contains 10 references.) (Ruthor/AEF)

Reproductions supplied by EDRS are the best that can be made
from the original document.

o

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED BY

G.H. Marks
e

[

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

ED 476 97,

U.S. DEPARTMENT OF EDUCATION

Utilizing the PDA as a Vehicle for giiiets i,
. CENTER (ERIC)
User Interface Design Pedagogy

ﬁ This document has been reproduced as
received from the person or organization

originating it.
O Minor changes have been made to
improve reproduction quality.

Michael E. Battig — mbattig@smcvt.edu
Computer Science Department, Saint Michael’s College * Points of view or opinions stated in this
document do not necessarily represent
Colchester, VT 05439 official OER position or policy.

Abstract

As computing and embedded systems become ubiquitous in our world, the importance of user interface
design knowledge increases in our curriculum. Students of undergraduate information systems or computer
science programs should possess some competence in this computing sub-discipline. However, many
programs do not have the curricular space to host a separate course in usability or user interface design. To
address this concern, results and observations of incorporating user interface design pedagogy in the
context of a software engineering project course are presented. The project centers around a data collection

application to be hosted on a PDA (Personal Digital Assistant). The application has significant constraints
concerning usability and human factors that provide a rich context for teaching and demonstrating user

interface design concepts.

;
Keywords: user interface design, usability, ergonomics, software engineering, laboratory course, PDA.

While change in computing seems inevitable, is

packing more topics into a finite curricular space.
Therefore, an approach that has gained momentum
to integrate some topics

1. INTRODUCTION

educators continue to wrestle with the problem of

v

; into the fabric of courses rather than creating individual courses for each topic [Johnson 1997]. In this work,
we will investigate the goals and outcomes of integrating user interface design pedagogy into a traditional

software engineering course. Specifically, we will look at the benefits and detriments of utilizing the Palm
PDA platfom as the focus of a semester-long student project.

The software engineering course for this project is a four-credit course taken during the senior year of a
traditional undergraduate program in Computer Science. A significant component of this course b the
semester long project. The project allows students to work in teams of no more than three students. The
four phases of the project are: requirements specification, design specification, implementation, and test

plan design and execution.

Thus, the teams have the benefit of seeing a project through many typical

phases of a software lifecycle.

Of particular interest is the utilization of the Palm 0S® platform as a vehicle to reinforce fundamental user
interface design and software engineering principles. This project concept has been employed for two
consecutive academic years. The students have a background in Java/C++ programming, but no prior
experience with the Palm OS® platform. The implementation and testing phases require the use of the

Metrowerks Code Warrior® IDE, which supports C++ for the Palm 0S® [Rhodes 1999].

o
&
oy
O

Rl

ERI!

=)
A
\o
v

C

BEST COPY AVAILABLE

Q

ERIC

Aruitoxt provided by Eic:

2. USER INTERFACE DESIGN GOALS

The software project in this instance is a basketball statistics data collection program for the Palm Illc and
Palm Illxe PDAs. The program must allow a novice Palm user to track basic statistics (e.g., field goals
attempted/made, personal fouls) on an individual player and team basis during the fast-paced action of a live
NCAA basketball game. Therefore, the program’s interface must be simp le, minimize the user’s memory
load, provide intuitive short cuts, allow for easy reversal of actions (e.g., undo), and prove to be reliable in
the real-time setting of a basketball game. Participants are given the opportunity to test their product at an
actual NCAA Division 11 basketball game during the final week of classes of the fall semester.

During lecture, students are given the opportunity to dialog on a number of outside resources related to
user interface design. Students are exposed to a variety of literature, some from the popular press [Carlton
1994] that illustrate, often in a very humorous fashion, the broad range of expertise that is common among
users. Students are also given supplemental material from the traditional user interface design discipline
[Shneiderman 1998, Nielsen 1993]. The following concepts are presented in this segment of the course:

Prototyping

Parallel Design

Know the User

Heuristics for Interface Design
Usability Testing.

The students are required to develop interface prototypes as part of their requirements and design
specification documents. The value of this has many facets, not the least of which is the reinforcement of
demonstrating an iterative design process. Thus, we see an effective interface developing over time rather
than developed in its entirety the first time. Furthermore, since each team is developing a unique interface,
students may then compare designs prior to implementation in order to see the benefits of participating in a
parallel design. Related-to this point is the need for the instructor to communicate a relaxing of the
traditional standards of academic dishonesty (i.e., we encourage the participants of this course to share
ideas and to incorporate the “best of class” into their own implementation).

Classical user interface design pedagogy invariably includes the novice/expert user continuum. To apply
this knowledge, students are encouraged to consider the attributes of the typical user of their system.
Basketball scouts are typically assistant coaches who are novice Palm users that will use the system on an
intermittent basis. Thus, many of the heuristics discussed in the course are applicable.

Simplicity of the interface is essential. For starters, the typical PDA does not provide an abundance of
display real estate. Secondly, all game time features need to be placed on a single screen (navigating
multiple screens during the fast-paced action is too burdensome). Student-developers are also encouraged
to provide informational feedback, minimize the user’s memory load, and provide consistent short cuts
where possible. Given that users will invariably make input mistakes, the system must allow for the easy
reversal of actions as well. The system also provides the opportunity to emulate direct manipulation versus
indirect manipulation as developers are encouraged to minimize user input via Graffiti® in favor of stylus
input (potentially integrating an error prevention strategy into the interface design).

The course introduces students to the differences between utilizing heuristics for user interface design (as
discussed above) and actual usability testing. Although students don’t typically have the time typically
(nor the inclination) to recruit human subjects for usability studies, they are encouraged to give their system
to a non-CS student for review. The process of looking at a software system’s interface through someone
else’s eyes is an enlightening experience for many.

3. SOFTWARE ENGINEERING GOALS

Q

ERIC

Aruitoxt provided by Eic:

The software engineering course that is the focus of this research is in many ways traditional. We utilize a
well-known text [Pressman 2001]. We teach a variety of process models, paradigms, and techniques with an

eye toward balancing theory with practice. However, after
ten years of teaching this course, we have found difficult to reinforce beyond telling (i.e., our
that some unique aspects of our Palm OS® project assumption is that telling is not teaching and that
illuminate certain lessons that are historically students will

embrace that which they self-discover through practice). Those lessons are:

Difficulties of software maintenance
Learning new tools/platforms
Differentiating essential from accidental
Applicability of non-technical skills
Working in a team environment
Dealing with non-contrived constraints.

The Palm project in this course gives many students their first hands-on experience with software

maintenance. For most of them, the project represents their first attempt at modifying a non-trivial program
written by another developer. This is accomplished with the students being given a base Palm C++ project
as a jump -start. The base program includes over 1400 lines of C++ spread over four classes. The original
motivation was that a typical Palm application was deemed too large for undergraduate students to develop
in the context of a one semester course, given that they must develop requirements and design

specifications before commencing with implementation. Students have typically added another 500 to 1,500
lines of C++ to the base project. Post semester student assessments have shown that at the conclusion of
the project, students say they would prefer to write their own application as opposed to maintaining code
written by someone else. Thus, we have achieved a significant leammg outcome by allowing students to
self-discover the hardships of software maintenance.

The Palm project also provides students with the opportunity to apply their knowledge of object-oriented
software development to a novel target platform. For all of the students to date, this represents their first
exposure to the Palm OS® Metrowerks CodeWarrior® development environment. Although the learning
curve for a new tool causes a certain level of anxiety in most of us, the experience creates a nice backdrop to
discuss the differences between the essential and accidental activities for a software project [Brooks 1986].
Thus, we are able to highlight the essential nature of many non-technical skills such as writing and
speaking. Since the project includes written documents (requirements, design, test plan) in addition to
source code, students are able to see first hand the essential nature of effective communication. The
potential pitfalls of communication are further highlighted, some might say exacerbated, by virtue of the fact
that the students work in teams.

Perhaps the most beneficial attribute of a learning experience is creating an enthusiastic atmosphere. We
have found that the combination of a novel platform and a believable application provides students with
enthusiasm in that they see the project as more “believable” than others that may have been contrived in
the past. At the start of the term, students are shown a commercial Palm 0OS® application for tracking
football statistics. The real-time differences between football and basketball game situations provide a nice
scenario for discussing usability issues. Center stage in this discussion is the fact that football provides
frequent, short breaks in the action that basketball does not permit. Fortunately, college students are almost
universally aware of the differences between the games, although the presence of international students
provides a ready reminder of cultural issues in software design. Thus, the elaborate multi-screen interface in
the football scouting application is insufficient in this case.

4. DIFFICULTIES & DISTRACTIONS

Without question this project provides some hurdles that every team mentioned in their post-mortem
survey:

Q

ERIC

Aruitoxt provided by Eic:

¢ Limitations of the Palm screen
e Lack of implementation tools
e Frustrations with maintenance.

Due to a combination of the usability demands of the application and the limited screen size on the Palm III,
all development teams concluded that the challenges in user interface design were more significant than
they had faced previously. Specifically, participants noted that buttons needed to be large enough to tap
accurately, yet not so large as to chew up too much screen real estate. On a related note, teams also
mentioned that they were challenged to come up with meaningful abbreviations for each button (e.g.,
“FreeTAtm” or “FTA” as an abbreviation for “free throw attempt”). For these reasons and others, the use
of the PDA in this course provides a pedagogical platform that allows students to deal with interface design
issues that are commonplace among practitioners.

Every team lamented the fact that they were limited to the C++ programming language and the CodeWarrior®
IDE. Participants are accustomed to a richer set of interface development tools such as JBuilder® or Visual
Basic®. Previous work has considered user interface design in the context of the PC [Battig 2000]. However,
the PDA target environment is significantly different from the PC. For starters, the resources of memory
(both primary and secondary) and processor are significantly less on the PDA. Secondly, the PDA
development platform has not been around for over two decades like the PC and thus has not been the
recipient of the sophisticated tools that accompany such tenure. The result is that students are given the
opportunity to learn a new development platform during development in much the same way as practitioners
do routinely.

On the post-mortem surveys, a majority of teams indicated that they would have preferred to develop their
own application from “scratch” instead of maintaining an existing one. For most, this is the first exposure to
the tyranny of software maintenance. Professional developers experience this frustration more than some
care to admit. However, the constraints of the marketplace do not usually permit developers to take the time
and money to build new systems, even when it seems justified from their perspective. Therefore, the project
has the benefit of demonstrating to participants the difficulties inherent in software maintenance.

5. CONCLUSION

The results and observations of using the PDA platform to teach user interface design and implementation
to undergraduate computing students include many benefits. Students are confronted with usability
obstacles that are more challenging than most they have faced to date. For example, several project teams
labeled their player buttons in sequence (from 1 to 5) instead of using the player jersey number. This
example provides a poignant application of reducing the user’s memory load. Although usability heuristics
like this are commonly taught, one final attribute of this project merits discussion. Because the PDA
platform is fairly novel (i.e., most students own a PC, but none of the participants own a PDA), it provides a
“gee-whiz” factor that increases student motivation. In other words, students are more enthusiastic
participants and learners in a project that they perceive is using cutting-edge technology.

The project also addresses many software engineering issues that present problems for pedagogues.
Because this project is larger than the typical student project (several thousand lines of code), it presents
issues of software engineering that are hard to expose in the classroom and yet are common in practice
[Dawson 1997]. Chief among the software engineering issues is the difficulty associated with software
maintenance.

Most computing curricula [ACM 1991, AITP 1997] recognize the importance of user interface design.
However, many undergraduate programs do not have the freedom in the curriculum to include a separate
course in user interface design. Therefore, the benefits of teaching usability issues in a related course (such
as software engineering) prove compelling. As an added benefit, project participants begin to see the

important ways in which many usability heuristics are integrated into the fabric of user interface design,
software implementation, and human relationships.
6. REFERENCES

ACM/IEEE-CS Joint Curriculum Task Force, Computing Curricula 1991, 1991
http://www.computer.org/education/cc1991.

AITP, 1597 Curriculum Model for 4 Year Undergraduate Programs in Information
Systems, 1997, http://www.is -97.org. Battig, Michael E and Ron

Sobol., “Migrating a Traditional Network and Data Communication Laboratory Course to an Information Systems -
Friendly Environment,” 2000, Proceedings of the Information Systems Education Confernece.

Brooks, Frederick P., “No Silver Bullet-Essence and Accident in Software Engineering,” 1986, Proceedings of the IFIP
Tenth World Computing Conference, pg. 1069-76.

Carlton, Jim, “Befuddled by PCs, Users Call for Help,” 1994, The Wall Street Journal.

Dawson, Ray and Ron Newsham, “Introducing Software Engineers to the Real World,” 1997, IEEE Software, vol 14,
no. 6, pg. 37-43. '

Johnson, Hubert A., “Integrating Software Engineering into the Traditional Computer Science Curriculum,” 1997,
SIGCSE Bulletin, vol. 29, no. 2, pg. 39-53.

Nielsen, Jakob, Usability Engineering, 1993, Morgan Kaufmann.

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 5™ Ed., 2001, McGraw-Hill, Inc.

Rhodes, Neil and Julie McKeehan, Palm Programming: The Developer’s Guide, 1999, O’Reilly & Associates, Inc.
Shneiderman, Ben, Designing the User Interface: Strategies for Effective Human-Computer Interaction, 3" Ed., 1998,

Addison Wesley Longman, Inc.

APPENDIX

To give the reader a better understanding of the data collection application and user interface employed in this
project, this section will highlight the evolution of the actual interface developed by one of the development teams.
The user interface design changes were the result of feedback that students received from four sources: course
materials on usability, direct instructor feedback, fellow classmate feedback, and outside-the-course student
feedback.

Figure 1. First Prototype User Interface

Figure 1 shows the first interface implemented. This interface has numerous deficiencies. The most glaring is the
memory load placed on the user to associate players on the floor with the numbers 1 through 5. Figure 2 shows the
improved interface with jersey numbers providing a more natural approach. Note also that the improved version
provides the ability to reverse previous actions via the “Undo” button. The latter interface includes features for two
teams instead of just one. The developers of this interface also incorporated some feedback on usability to change
the abbreviations used on the buttons. Notice that the abbreviation for a three-point shot attempt changed from
“3pa” to “3ptAtm.”

Figure 2. Revised User Interface

The revised interface in Figure 2 also provides buttons for substitutes (“Subs”) and summary of statistics (“Report”).
Screen shots for these features are shown in Figures 3 and 4 respectively. To make a substitution, the user clicks a
player currently on the floor and a player currently on the bench and then clicks “Sub.” Figure 3 shows that Johnson
will be coming off the bench as a substitution for Strickland. Lastly, Figure 4 shows the summary statistics collected
for Team 2. These statistics may also be viewed on an individual player basis.

Figure 3. Substitution Screen Shot

Interested readers my access the syllabus for this course on the author’s web site:

http://personalweb.smcvt.edu/mbattig/CS407%20Syllabus.htm

' : Figure 4. Summary Statistics Screen Shot

SHREULHU|
St

ERIC | - BESTCOPYAVAILABLE

Aruitoxt provided by Eic:

e
U.S. Department of Education E) EC-

Office of Educational Research and Improvement (OERI) NI\
National Library of Education (NLE) Edoediod Besoucesinkomtcn Center
Educational Resources Information Center (ERIC)

f

NOTICE

Reproduction Basis

This document is covered by a signed "Reproduction Release (Blanket)"
form (on file within the ERIC system), encompassing all or classes of
documents from its source organization and, therefore, does not require a
"Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may be
reproduced by ERIC without a signed Reproduction Release form (either
"Specific Document" or "Blanket").

EFF-089 (1/2003)

